1.Protocolo de comunicaciones:
Llamamos protocolo de comunicaciones a una serie de normas que usan los equipos informáticos para gestionar sus diálogos en los intercambios de información. Dos equipos diferentes de marcas diferentes se pueden comunicar sin problemas en el caso en que usen el mismo protocolo de comunicaciones.
A lo largo del tiempo ha ido mejorando la tecnología de las comunicaciones, y se han podido ir usando protocolos mas útiles para las nuevas máquinas. Por ello han ido apareciendo nuevos protocolos a los que se han ido adaptando los productos de cada fabricante para asegurarse la compatibilidad con el resto de las marcas.
El protocolo más usado en Internet es el TCP/IP.
2. ¿Que es el TCP/IP? - Definición de TCP/IP
TCP/IP son las siglas de Protocolo de Control de Transmisión/Protocolo de Internet (en inglés Transmission Control Protocol/Internet Protocol), un sistema de protocolos que hacen posibles servicios Telnet, FTP, E-mail, y otros entre ordenadores que no pertenecen a la misma red.
El Protocolo de Control de Transmisión (TCP) permite a dos anfitriones establecer una conexión e intercambiar datos. El TCP garantiza la entrega de datos, es decir, que los datos no se pierdan durante la transmisión y también garantiza que los paquetes sean entregados en el mismo orden en el cual fueron enviados.
El Protocolo de Internet (IP) utiliza direcciones que son series de cuatro números ocetetos (byte) con un formato de punto decimal, por ejemplo: 69.5.163.59
3. Los equipos comunican a través de Internet mediante el protocolo IP (Protocolo de Internet). Este protocolo utiliza direcciones numéricas denominadas direcciones IP compuestas por cuatro números enteros (4 bytes) entre 0 y 255, y escritos en el formato xxx.xxx.xxx.xxx. Por ejemplo, 194.153.205.26 es una dirección IP en formato técnico.
Los equipos de una red utilizan estas direcciones para comunicarse, de manera que cada equipo de la red tiene una dirección IP exclusiva.
El organismo a cargo de asignar direcciones públicas de IP, es decir, direcciones IP para los equipos conectados directamente a la red pública de Internet, es el ICANN (Internet Corporation for Assigned Names and Numbers) que remplaza el IANA desde 1998 (Internet Assigned Numbers Agency).
4. Estructura de una IP
La dirección IP lógica de 32 bits tiene una composición que consta de dos partes. La primera parte identifica la red, y la segunda parte identifica un host en esa red. En una dirección IP, ambas partes son necesarias.
Por ejemplo: si un host tiene la dirección IP 192.168.18.57, los primeros tres octetos (192.168.18) identifican la porción de red de la dirección, y el último octeto (57) identifica el host. Esto se conoce como direccionamiento jerárquico, debido a que la porción de red indica la red donde esta ubicado el host. Los routers sólo necesitan saber cómo llegar a cada red, sin tener que saber la ubicación de cada host individual.
5. Clases de dirección IP
Existen 5 tipos de clases de IP más ciertas direcciones especiales:
Red por defecto (default) - La dirección IP de 0.0.0.0 se utiliza para la red por defecto.
Clase A - Esta clase es para las redes muy grandes, tales como las de una gran compañía internacional. Del IP con un primer octeto a partir de 1 al 126 son parte de esta clase. Los otros tres octetos son usados para identificar cada anfitrión. Esto significa que hay 126 redes de la clase A con 16,777,214 (224 -2) posibles anfitriones para un total de 2,147,483,648 (231) direcciones únicas del IP. Las redes de la clase A totalizan la mitad de las direcciones disponibles totales del IP.
En redes de la clase A, el valor del bit *(el primer número binario) en el primer octeto es siempre 0.
Loopback - La dirección IP 127.0.0.1 se utiliza como la dirección del loopback. Esto significa que es utilizada por el ordenador huésped para enviar un mensaje de nuevo a sí mismo. Se utiliza comúnmente para localizar averías y pruebas de la red.
Clase B - La clase B se utiliza para las redes de tamaño mediano. Un buen ejemplo es un campus grande de la universidad. Las direcciones del IP con un primer octeto a partir del 128 a1 191 son parte de esta clase. Las direcciones de la clase B también incluyen el segundo octeto como parte del identificador neto. Utilizan a los otros dos octetos para identificar cada anfitrión(host). Esto significa que hay 16,384 (214) redes de la clase B con 65,534 (216 -2) anfitriones posibles cada uno para un total de 1,073,741,824 (230) direcciones únicas del IP. Las redes de la clase B totalizan un cuarto de las direcciones disponibles totales del IP y tienen un primer bit con valor de 1 y un segundo bit con valor de 0 en el primer octeto.
Clase C - Las direcciones de la clase C se utilizan comúnmente para los negocios pequeños a mediados de tamaño. Las direcciones del IP con un primer octeto a partir del 192 al 223 son parte de esta clase. Las direcciones de la clase C también incluyen a segundos y terceros octetos como parte del identificador neto. Utilizan al último octeto para identificar cada anfitrión. Esto significa que hay 2,097,152 (221) redes de la clase C con 254 (28 -2) anfitriones posibles cada uno para un total de 536,870,912 (229) direcciones únicas del IP. Las redes de la clase C totalizan un octavo de las direcciones disponibles totales del IP. Las redes de la clase C tienen un primer bit con valor de 1, segundo bit con valor de 1 y de un tercer bit con valor de 0 en el primer octeto.
Clase D - Utilizado para los multicast, la clase D es levemente diferente de las primeras tres clases. Tiene un primer bit con valor de 1, segundo bit con valor de 1, tercer bit con valor de 1 y cuarto bit con valor de 0. Los otros 28 bits se utilizan para identificar el grupo de computadoras al que el mensaje del multicast esta dirigido. La clase D totaliza 1/16ava (268,435,456 o 228) de las direcciones disponibles del IP.
Clase E - La clase E se utiliza para propósitos experimentales solamente. Como la clase D, es diferente de las primeras tres clases. Tiene un primer bit con valor de 1, segundo bit con valor de 1, tercer bit con valor de 1 y cuarto bit con valor de 1. Los otros 28 bits se utilizan para identificar el grupo de computadoras que el mensaje del multicast esta dirigido. La clase E totaliza 1/16ava (268,435,456 o 228) de las direcciones disponibles del IP.
Broadcast - Los mensajes que se dirigen a todas las computadoras en una red se envían como broadcast. Estos mensajes utilizan siempre La dirección IP 255.255.255.255
6. IP privada y publica
¿Que es una IP privada?
Muchas veces nos hemos referido a los rangos de IPs privadas. Hoy vamos a ver cuales son según el RFC1918 además del rango de auto-configuración o de enlace local (RFC3330).
Las IPs privadas sirven para proveer conectividad entre equipos internos sin que se pueda acceder directamente a Internet (se debería definir un NAT). Los routers descartan los paquetes con direccionamiento privado desde la interfaz outside (salvo problema de seguridad) por lo que como mucho podríamos lanzar paquetes pero nunca podrían contestar ya que no se podría saber como “volver“.
Existen tres bloques como direccionamiento privado, ordenados de mayor a menor:
El bloque 10.0.0.0/8 va desde la IP 10.0.0.0 a la 10.255.255.255. Al ser el bloque más grande se suele usar para la red principal.
El bloque 172.16.0.0/12 va de la 172.16.0.0 a la 172.31.255.255. Aunque es la segunda más grande es una de las menos utilizadas, seguramente por ir el segundo byte del 16 al 31 en lugar de números más amigables.
El bloque 192.168.0.0/16 va de la IP 192.168.0.0 a la 192.168.255.255. Se trata del bloque más pequeño pero el que más se usa.
Existe un cuarto rango que podemos clasificar como “privado” por no ser enrutable por internet, pero que se usa para “autoconfiguración de red” o de enlace local. se trata de un rango que se usa cuando el DHCP no está disponible:
El bloque 169.254.0.0/16 va de la 169.254.0.0 a la 169.254.255.255
Para minimizar colisiones se asigna una IP aleatoria dentro de este bloque, lo que permite por lo menos una comunicación entre equipos conectados a la red.
¿Qué es una IP publica?
Para que nuestro ordenador pueda acceder a Internet, es necesario que se identifique de alguna manera de tal modo que podamos recibir la información solicitada correctamente. Por ese motivo cada ordenador que accede a Internet lo hace identificándose con un número único e irrepetible. Ese número es lo que denominamos una dirección IP.
Una dirección IP pública se denomina de tal modo cuando es visible en todo Internet. Cuando accedemos a Internet desde nuestro ordenador obtenemos una dirección IP público suministrada por nuestro proveedor de conexión a Internet. Esa dirección IP es nuestra dirección IP de salida a Internet en ese momento.
7. Mascara de sub-red
Máscara de subred
La máscara de subred es una máscara de bits que determina la parte de sistema principal y la parte de red de una dirección IP (Protocolo Internet).
La máscara de subred es un entero de 32 bits exclusivo que define la parte de la red donde se conecta una interfaz. La máscara debe especificarse siempre conjuntamente con una dirección de red (IP).
La máscara tiene el formato xxx.xxx.xxx.xxx, en el que cada campo es la representación decimal de 1 byte (8 bits) de la máscara. Por ejemplo, la máscara de subred cuya representación hexadecimal es X'FFFFFF00', en notación decimal es 255.255.255.0. Los bits de la máscara que se establecen en 1 determinan las partes de red y subred de la dirección. Los bits que se establecen en 0 determinan la parte de sistema principal de la dirección.
La máscara de subred y la dirección IP permiten a IP determinar dónde debe enviar los datos que recibe. IP correlaciona lógicamente la máscara de subred con una dirección IP. Esta acción permite determinar qué bits de la dirección pertenecen a la parte de red y qué bits de la dirección pertenecen a la parte de sistema principal.
La máscara de subred permite dividir una red entre varias redes más pequeñas denominadas subredes. Las subredes representan una red dentro de otra red. Todas las direcciones IP que están en la misma subred, o red, tienen la misma máscara de subred. Estas direcciones incluyen el sistema principal y las direcciones de red o subred.
El Asesor calculador de subred le ayuda a determinar las direcciones IP de las nuevas subredes. Todo lo que debe hacer es teclear la dirección de la red y especificar cuántas subredes desea crear. El Asesor calculador de subred visualiza la dirección IP de la red y del primer y último sistema principal de cada subred.
8. Puerta de enlace
Qué es una puerta de enlace?
Una puerta de enlace es un sistema de la red que nos permite, a través de si mismo, acceder a otra red, o dicho de otra manera, sirve de enlace entre dos redes…
El caso más claro es un router, un router no es un ordenador, no es un servidor, no es una cafetera es un router y una de sus principales funciones es enrutar por lo que se convierte en la puerta de enlace de todo dispositivo que quede conectado a él.
Seguimos con la puerta de enlace… Aclaro por si acaso que una puerta de enlace es un dispositivo y no es un servicio, repito, una puerta de enlace puede ser un router, un servidor o un portatil, pero no es un servicio es un dispositivo de la red que nos permite acceder a otra red y esto lo tengo que repetir porque una puerta de enlace puede requerir de servicios para cumplir su función de puerta de enlace, pero cada sistema utilizará una serie de servicios que se llamarán como quieran llamarse.
Tema: simulador Packet Tracer
www.youtube.com/watch?v=3xnODd-y0OY
Redes
dispositivos pasivos
Elemento que se utiliza para interconectar los enlaces de una red de datos su utilización se define en las normativas internacionales. Armarios, Paneles, Tomas, Canalizaciones.
Jacks / Conectores :
El conector BNC es un tipo de conector para uso con cable coaxial.
Los conectores para la Fibra Óptica son variados entre los cuales encontramos los siguientes:


dispositivos activos
dispositivos aCanaletas de redctivos
Canaletas de red
Las canaletas son tubos metálicos o plásticos que conectados de forma correcta proporcionan al cable una mayor protección en contra de interferencias electromagnéticas originadas por los diferentes motores eléctricos.
Para que las canaletas protejan a los cables de dichas perturbaciones es indispensable la óptima instalación y la conexión perfecta en sus extremos.
Tipos de canaletas:
Canaletas tipo escaleras:Estas bandejas son muy flexibles, de fácil instalación y fabricadas en diferentes dimensiones.Son de uso exclusivo para zonas techadas, fabricadas en planchas de acero galvanizado de 1.5 Mm. y 2.0 Mm. de espesor.
Tipo Cerrada:Bandeja en forma de "U", utilizada con o sin tapa superior, para instalaciones a la vista o en falso techo.Utilizadas tanto para instalaciones eléctricas, de comunicación o de datos.Este tipo de canaleta tiene la ventaja de poder recorrer áreas sin techar.
Tipos Especiales:Estas bandejas pueden ser del tipo de colgar o adosar en la pared y pueden tener perforaciones para albergar salidas para interruptores, toma - corrientes, datos o comunicaciones.La pintura utilizada en este tipo de bandejas es electrostática en polvo, dándole un acabado insuperable.
Canaletas plásticas:Facilita y resuelve todos los problemas de conducción y distribución de cables. Se utilizan para fijación a paredes, chasis y paneles, vertical y horizontalmente.Los canales, en toda su longitud, están provistas de líneas de pre ruptura dispuestas en la base para facilitar el corte de un segmento de la pared para su acoplamiento con otras canales formando T, L, salida de cables, etc.
Canal salva cables:Diseñado especialmente para proteger y decorar el paso de cables de: telefonía, electricidad, megafonía, computadores, etc. por suelos de oficinas.Los dos modelos de Salva cables disponen de tres compartimentos que permiten diferenciar los distintos circuitos.La canaleta es un canal montado sobre la pared con una cubierta móvil.
Canaleta decorativa:tiene una terminación más acabada. La canaleta decorativa se utiliza para colocar un cable sobre la pared de una habitación, donde quedaría visible de otra manera.Canal: una alternativa menos atractiva que la de la canaleta decorativa. Su principal ventaja, sin embargo, es que es lo suficientemente grande como para contener varios cables.
PINES O CLAVIJAS EN LOS CONECTORES RJ45:
El diagrama de pines se refiere a los números de contacto en el conector RJ45 (8P8C) y asegura que se realicen las conexiones en la posición correcta
CABLEADO DE REDES CON CABLE UTP 5 O 5E: En este estándar, los cables deben conectarse segun la figura 1 (EIA/TIA 568B) y de la misma manera en ambos extremos.
CABLEADO DE REDES CON CABLE UTP CAT6:
Esta conexión se hace normalmente utilizando el mismo código de colores que el cable Cat5e, aunque el cable es de mejores especificaciones para permitir mayor velocidad de transmisión de datos.
RACK
rack es un término inglés que se emplea para nombrar a la estructura que permite sostener o albergar un dispositivo tecnológico. Se trata de un armazón metálico que, de acuerdo a sus características, sirve para alojar una computadora, un router u otro tipo de equipo.
Lo habitual es que los racks puedan ensamblarse para contener, en conjunto, una gran cantidad de equipos. De este modo, aquello que se entiende por rack suele ser utilizado en instituciones científicas o educativas, oficinas gubernamentales o grandes corporaciones. En los hogares, es más frecuente que las computadoras se ubiquen en un mueble tipo escritorio.
Patch Panel
Los llamados Patch Panel son utilizados en algún punto de una red informática donde todos los cables de red terminan. En una red LAN, el Patch Panel conecta entre si a los ordenadores de una red, y a su vez, a líneas salientes que habilitan la LAN para conectarse a Internet o a otra red WAN. Los Patch Panel permiten hacer cambios de forma rápida y sencilla conectando y desconectando los cables de parcheo.
switch
Un switch o conmutador es un dispositivo de interconexión utilizado para conectar equipos en red formando lo que se conoce como una red de área local (LAN) y cuyas especificaciones técnicas siguen el estándar conocido como Ethernet (o técnicamente IEEE 802.3).
CABLEADO ESTRUCTURADO
De esta manera, el apego del cableado estructurado a un estándar permite que este tipo de sistemas ofrezca flexibilidad de instalación e independencia de proveedores y protocolos, además de brindar una amplia capacidad de crecimiento y de resultar fáciles de administrar.
En estos casos, el tendido suele desarrollarse con cable de par trenzado de cobre (para redes de tipo IEEE 802.3), aunque también puede utilizarse cable de fibra óptica o cable coaxial.
Lo que permite el cableado estructurado es transportar, dentro de un edificio o recinto, las señales que provienen de un emisor hasta su correspondiente receptor. Se trata, por lo tanto, de una red física que puede combinar cables UTP, bloques de conexión y adaptadores, entre otros elementos.
CABLE COAXIAL
Normas del Cableado Estructurado
Este tipo de cable esta compuesto de un hilo conductor central de cobre rodeado por una malla de hilos de cobre. El espacio entre el hilo y la malla lo ocupa un conducto de plástico que separa los dos conductores y mantiene las propiedades eléctricas. Todo el cable está cubierto por un aislamiento de protección para reducir las emisiones eléctricas. El ejemplo más común de este tipo de cables es el coaxial de televisión.
Originalmente fue el cable más utilizado en las redes locales debido a su alta capacidad y resistencia a las interferencias, pero en la actualidad su uso está en declive.
Su mayor defecto es su grosor, el cual limita su utilización en pequeños conductos eléctricos y en ángulos muy agudos.
Existen dos tipos de cable coaxial:
Thick (grueso). Este cable se conoce normalmente como “cable amarillo“, fue el cable coaxial utilizado en la mayoría de las redes. Su capacidad en términos de velocidad y distancia es grande, pero el coste del cableado es alto y su grosor no permite su utilización en canalizaciones con demasiados cables. Este cable es empleado en las redes de área local conformando con la norma 10 Base 2.
Thin (fino). Este cable se empezó a utilizar para reducir el coste de cableado de la redes. Su limitación está en la distancia máxima que puede alcanzar un tramo de red sin regeneración de la señal. Sin embargo el cable es mucho más barato y fino que el thick y, por lo tanto, solventa algunas de las desventajas del cable grueso. Este cable es empleado en las redes de área local conformando con la norma 10 Base 5
PAR TRENSADO
Es el tipo de cable más común y se originó como solución para conectar teléfonos, terminales y ordenadores sobre el mismo cableado, ya que está habilitado para comunicación de datos permitiendo frecuencias más altas transmisión. Con anterioridad, en Europa, los sistemas de telefonía empleaban cables de pares no trenzados.
Cada cable de este tipo está compuesto por una serie de pares de cables trenzados. Los pares se trenzan para reducir la interferencia entre pares adyacentes. Normalmente una serie de pares se agrupan en una única funda de color codificado para reducir el número de cables físicos que se introducen en un conducto. El número de pares por cable son 4, 25, 50, 100, 200 y 300. Cuando el número de pares es superior a 4 se habla de cables multipar.
Tipos de cables de par trenzado:
No blindado. Es el cable de par trenzado normal y se le referencia por sus siglas en inglés UTP (Unshield Twiested Pair; Par Trenzado no Blindado). Las mayores ventajas de este tipo de cable son su bajo costo y su facilidad de manejo. Sus mayores desventajas son su mayor tasa de error respecto a otros tipos de cable, así como sus limitaciones para trabajar a distancias elevadas sin regeneración.
ELEMENTOS PRINCIPALES DE UNA CABLEADO ESTRUCTURADO
CABLEADO HORIZONTAL
La norma EIA/TIA 568A define el cableado horizontal de la siguiente forma: el sistema de cableado horizontal es la porción del sistema de cableado de telecomunicaciones que se extiende del área de trabajo al cuarto de telecomunicaciones o viceversa.
El cableado horizontal consiste de dos elementos básicos: rutas y espacios horizontales (también llamado "sistemas de distribución horizontal"). Las rutas y espacios horizontales son utilizados para distribuir y soportar cable horizontal y conectar hardware entre la salida del área de trabajo y el cuarto de telecomunicaciones. Estas rutas y espacios son los "contenedores" del cableado Horizontal.
Si existiera cielo raso suspendido se recomienda la utilización de canaletas para transportar los cables horizontales.
Una tubería de ¾ pulgadas por cada dos cables UTP.
Una tubería de 1 pulgada por cada cable de dos fibras ópticas.
Los radios mínimos de curvatura deben ser bien implementados.
El cableado horizontal incluye:
Las salidas (cajas/placas/conectores) de telecomunicaciones en el área de trabajo (en inglés: work area outlets, WAO).
Cables y conectores de transición instalados entre las salidas del área de trabajo y el cuarto de telecomunicaciones.
Paneles de empalme (patch panels) y cables de empalme utilizados para configurar las conexiones de cableado horizontal en el cuarto de telecomunicaciones.
Se deben hacer ciertas consideraciones a la hora de seleccionar el cableado horizontal: contiene la mayor cantidad de cables individuales en el edificio.
CONSIDERACIONES DE DISEÑO
Los costes en materiales, mano de obra e interrupción de labores al hacer cambios en el cableado horizontal pueden ser muy altos. Para evitar estos costes, el cableado horizontal debe ser capaz de manejar una amplia gama de aplicaciones de usuario. La distribución horizontal debe ser diseñada para facilitar el mantenimiento y la relocalización de áreas de trabajo. El diseñador también debe considerar incorporar otros sistemas de información del edificio (por ej. televisión por cable, control ambiental, seguridad, audio, alarmas y sonido) al seleccionar y diseñar el cableado horizontal.
TOPOLOGIA
La norma EIA/TIA 568A hace las siguientes recomendaciones en cuanto a la topología del cableado horizontal:
El cableado horizontal debe seguir una topología estrella.
Cada toma/conector de telecomunicaciones del área de trabajo debe conectarse a una interconexión en el cuarto de telecomunicaciones.
DISTANCIAS
Sin importar el medio físico, la distancia horizontal máxima no debe exceder 90 m. La distancia se mide desde la terminación mecánica del medio en la interconexión horizontal en el cuarto de telecomunicaciones hasta la toma/conector de telecomunicaciones en el área de trabajo. Además se recomiendan las siguientes distancias: se separan 10 m para los cables del área de trabajo y los cables del cuarto de telecomunicaciones (cordones de parcheo, jumpers y cables de equipo).
MEDIOS RECONOCIDOS
Se reconocen tres tipos de cables para el sistema de cableado horizontal:
Cables de par trenzado sin blindar (UTP) de 100 ohmios y cuatro pares.
Cables de par trenzado blindado (STP) de 150 ohmios y cuatro pares.
Cables de fibra óptica multimodo de 62.5/125 μm y dos fibras.
CABLEADO VERTICAL O BAKBONE
El sistema de cableado vertical proporciona interconexiones entre cuartos de entrada de servicios de edificio, cuartos de equipo y cuartos de telecomunicaciones. El cableado del backbone incluye la conexión vertical entre pisos en edificios de varios pisos. El cableado del backbone incluye medios de transmisión (cables), puntos principales e intermedios de conexión cruzada y terminaciones mecánicas. El cableado vertical realiza la interconexión entre los diferentes gabinetes de telecomunicaciones y entre estos y la sala de equipamiento. En este componente del sistema de cableado ya no resulta económico mantener la estructura general utilizada en el cableado horizontal, sino que es conveniente realizar instalaciones independientes para la telefonía y datos. Esto se ve reforzado por el hecho de que, si fuera necesario sustituir el backbone, ello se realiza con un coste relativamente bajo, y causando muy pocas molestias a los ocupantes del edificio. El backbone telefónico se realiza habitualmente con cable telefónico multipar. Para definir el backbone de datos es necesario tener en cuenta cuál será la disposición física del equipamiento. Normalmente, el tendido físico del backbone se realiza en forma de estrella, es decir, se interconectan los gabinetes con uno que se define como centro de la estrella, en donde se ubica el equipamiento electrónico más complejo.
El backbone de datos se puede implementar con cables UTP y/o con fibra óptica. En el caso de decidir utilizar UTP, el mismo será de categoría 5e, 6 o 6A y se dispondrá un número de cables desde cada gabinete al gabinete seleccionado como centro de estrella.
Actualmente, la diferencia de coste provocada por la utilización de fibra óptica se ve compensada por la mayor flexibilidad y posibilidad de crecimiento que brinda esta tecnología. Se construye el backbone llevando un cable de fibra desde cada gabinete al gabinete centro de la estrella. Si bien para una configuración mínima Ethernet basta con utilizar cable de dos fibras, resulta conveniente utilizar cable con mayor cantidad de fibras (6 a 12) ya que la diferencia de coste no es importante y se posibilita por una parte disponer de conductores de reserva para el caso de falla de algunos, y por otra parte, la utilización en el futuro de otras topologías que requieren más conductores, como FDDI o sistemas resistentes a fallas. La norma EIA/TIA 568 prevé la ubicación de la transmisión de cableado vertical a horizontal, y la ubicación de los dispositivos necesarios para lograrla, en habitaciones independientes con puerta destinada a tal fin, ubicadas por lo menos una por piso, denominadas armarios de telecomunicaciones. Se utilizan habitualmente gabinetes estándar de 19 pulgadas de ancho, con puertas, de aproximadamente 50 cm de profundidad y de una altura entre 1,5 y 2 metros. En dichos gabinetes se dispone generalmente de las siguientes secciones:
Acometida de los puestos de trabajo: dos cables UTP llegan desde cada puesto de trabajo.
Acometida del backbone telefónico: cable multipar que puede determinar en regletas de conexión o en patch panels.
Acometida del backbone de datos: cables de fibras ópticas que se llevan a una bandeja de conexión adecuada.
Cuarto de entrada de servicios[editar]
En cables, accesorios de conexión, dispositivos de protección, y demás equipos necesario para conectar el edificio a servicios externos. Puede contener el punto de demarcación. Ofrecen protección eléctrica establecida por códigos eléctricos aplicables. Deben ser diseñadas de acuerdo a la norma EIA/TIA-569-A. Los requerimientos de instalación son:
Precauciones en el manejo del cable
Evitar tensiones en el cable
Los cables no deben enrutarse en grupos muy apretados
Utilizar rutas de cable y accesorios apropiados 100 ohmios UTP y STP
No giros con un ángulo menor de 90 grados ni mayor de 270.
SISTEMA PUESTO A TIERRA
El sistema de puesta a tierra y puenteo establecido en estándar ANSI/TIA/EIA-607 es un componente importante de cualquier sistema de cableado estructurado moderno. El gabinete deberá disponer de una toma de tierra, conectada a la tierra general de la instalación eléctrica, para efectuar las conexiones de todo equipamiento. El conducto de tierra no siempre se halla indicado en planos y puede ser único para ramales o circuitos que pasen por las mismas cajas de pase, conductos ó bandejas. Los cables de tierra de seguridad serán puestos a tierra en el subsuelo.
CATEGORIAS DE RED
categoría 1: se utiliza para comunicaciones telefónicas y no es adecuado para la transmisión de datos ya que sus velocidades no alcanzan los 512 kbit/s.
categoría 2: puede transmitir datos a velocidades de hasta 4 Mbit/s.
categoría 3: se utiliza en redes 10BaseT y puede transmitir datos a velocidades de hasta 10 Mbit/s.
categoría 4: se utiliza en redes Token Ring y puede transmitir datos a velocidades de hasta 16 Mbit/s.
categoría 5: puede transmitir datos a velocidades de hasta 100 Mbit/s.
categoría 6: Redes de alta velocidad hasta 1 Gbit/s.
categoría 6A: Redes de alta velocidad hasta 10 Gbit/s.